Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Chem Biol ; 4(12): 1014-1036, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38033733

RESUMO

Pattern recognition receptors (PRRs) represent a re-emerging class of therapeutic targets for vaccine adjuvants, inflammatory diseases and cancer. In this review article, we summarize exciting developments in discovery and characterization of small molecule PRR modulators, focusing on Toll-like receptors (TLRs), NOD-like receptors (NLRs) and the cGAS-STING pathway. We also highlight PRRs that are currently lacking small molecule modulators and opportunities for chemical biology and therapeutic discovery.

2.
Chem Commun (Camb) ; 58(46): 6598-6601, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35584401

RESUMO

To further understand the mechanisms of muramyl dipeptide (MDP) sensing by NOD2, we evaluated key properties involved in the formation of the Arf6-MDP-NOD2 complex in mammalian cells. We found that the conserved Arf aromatic triad is crucial for binding to MDP-NOD2. Mutation of Arf6 N-myristoylation and NOD2 S-palmitoylation also abrogated the formation of the Arf6-MDP-NOD2 complex. Notably, lipid-modified MDP (L18-MDP) increased Arf6-NOD2 assembly. Our results indicate recruitment of Arf6 may explain enhanced activity of lipidated MDP analogues and membrane targeting may be important in developing next-generation NOD2 agonists.


Assuntos
Acetilmuramil-Alanil-Isoglutamina , Proteína Adaptadora de Sinalização NOD2 , Acetilmuramil-Alanil-Isoglutamina/química , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Animais , GTP Fosfo-Hidrolases , Mamíferos/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo
3.
Clin Transl Immunology ; 8(12): e1095, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798878

RESUMO

The discovery of defined peptidoglycan metabolites that activate host immunity and their specific receptors has revealed fundamental insights into host-microbe recognition and afforded new opportunities for therapeutic development against infection and cancer. In this review, we summarise the discovery of two key peptidoglycan metabolites, γ-d-glutamyl-meso-diaminopimelic acid (iE-DAP) and muramyl dipeptide and their respective receptors, Nod1 and Nod2, and review progress towards translating these findings into therapeutic agents. Notably, synthetic derivatives of peptidoglycan metabolites have already yielded approved drugs for chemotherapy-induced leukopenia and paediatric osteosarcoma; however, the broad effects of peptidoglycan metabolites on host immunity suggest additional translational opportunities for new therapeutics towards other cancers, microbial infections and inflammatory diseases.

4.
Elife ; 82019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30969170

RESUMO

We discovered that Enterococcus faecium (E. faecium), a ubiquitous commensal bacterium, and its secreted peptidoglycan hydrolase (SagA) were sufficient to enhance intestinal barrier function and pathogen tolerance, but the precise biochemical mechanism was unknown. Here we show E. faecium has unique peptidoglycan composition and remodeling activity through SagA, which generates smaller muropeptides that more effectively activates nucleotide-binding oligomerization domain-containing protein 2 (NOD2) in mammalian cells. Our structural and biochemical studies show that SagA is a NlpC/p60-endopeptidase that preferentially hydrolyzes crosslinked Lys-type peptidoglycan fragments. SagA secretion and NlpC/p60-endopeptidase activity was required for enhancing probiotic bacteria activity against Clostridium difficile pathogenesis in vivo. Our results demonstrate that the peptidoglycan composition and hydrolase activity of specific microbiota species can activate host immune pathways and enhance tolerance to pathogens.


Assuntos
Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Enterococcus faecium/enzimologia , Enterococcus faecium/imunologia , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Cristalografia por Raios X , Células HEK293 , Humanos , Proteína Adaptadora de Sinalização NOD2/metabolismo , Peptidoglicano/metabolismo , Conformação Proteica
5.
ACS Chem Biol ; 13(6): 1631-1639, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29757599

RESUMO

Heme nitric oxide/oxygen sensing (H-NOX) domains are direct NO sensors that regulate a variety of biological functions in both bacteria and eukaryotes. Previous work on H-NOX proteins has shown that upon NO binding, a conformational change occurs along two glycine residues on adjacent helices (termed the glycine hinge). Despite the apparent importance of the glycine hinge, it is not fully conserved in all H-NOX domains. Several H-NOX sensors from the family Flavobacteriaceae contain a native alanine substitution in one of the hinge residues. In this work, the effect of the increased steric bulk within the Ala-Gly hinge on H-NOX function was investigated. The hinge in Kordia algicida OT-1 ( Ka H-NOX) is composed of A71 and G145. Ligand-binding properties and signaling function for this H-NOX were characterized. The variant A71G was designed to convert the hinge region of Ka H-NOX to the typical Gly-Gly motif. In activity assays with its cognate histidine kinase (HnoK), the wild type displayed increased signal specificity compared to A71G. Increasing titrations of unliganded A71G gradually inhibits HnoK autophosphorylation, while increasing titrations of unliganded wild type H-NOX does not inhibit HnoK. Crystal structures of both wild type and A71G Ka H-NOX were solved to 1.9 and 1.6 Å, respectively. Regions of H-NOX domains previously identified as involved in protein-protein interactions with HnoK display significantly higher b-factors in A71G compared to wild-type H-NOX. Both biochemical and structural data indicate that the hinge region controls overall conformational flexibility of the H-NOX, affecting NO complex formation and regulation of its HnoK.


Assuntos
Proteínas de Bactérias/metabolismo , Flavobacteriaceae/química , Hemeproteínas/metabolismo , Óxido Nítrico/metabolismo , Alanina/química , Proteínas de Bactérias/química , Glicina/química , Heme/química , Hemeproteínas/química , Ligantes , Mutação , Oxirredução , Maleabilidade , Ligação Proteica , Conformação Proteica
6.
ACS Chem Biol ; 11(8): 2337-46, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27328180

RESUMO

Acute and specific sensing of diatomic gas molecules is an essential facet of biological signaling. Heme nitric oxide/oxygen binding (H-NOX) proteins are a family of gas sensors found in diverse classes of bacteria and eukaryotes. The most commonly characterized bacterial H-NOX domains are from facultative anaerobes and are activated through a conformational change caused by formation of a 5-coordinate Fe(II)-NO complex. Members of this H-NOX subfamily do not bind O2 and therefore can selectively ligate NO even under aerobic conditions. In contrast, H-NOX domains encoded by obligate anaerobes do form stable 6-coordinate Fe(II)-O2 complexes by utilizing a conserved H-bonding network in the ligand-binding pocket. The biological function of O2-binding H-NOX domains has not been characterized. In this work, the crystal structures of an O2-binding H-NOX domain from the thermophilic obligate anaerobe Caldanaerobacter subterraneus (Cs H-NOX) in the Fe(II)-NO, Fe(II)-CO, and Fe(II)-unliganded states are reported. The Fe(II)-unliganded structure displays a conformational shift distinct from the NO-, CO-, and previously reported O2-coordinated structures. In orthogonal signaling assays using Cs H-NOX and the H-NOX signaling effector histidine kinase from Vibrio cholerae (Vc HnoK), Cs H-NOX regulates Vc HnoK in an O2-dependent manner and requires the H-bonding network to distinguish O2 from other ligands. The crystal structures of Fe(II) unliganded and NO- and CO-bound Cs H-NOX combined with functional assays herein provide the first evidence that H-NOX proteins from obligate anaerobes can serve as O2 sensors.


Assuntos
Oxigênio/metabolismo , Transdução de Sinais , Thermoanaerobacter/metabolismo , Cristalografia por Raios X , Compostos Ferrosos/metabolismo , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Conformação Proteica
7.
J Bacteriol ; 192(20): 5424-36, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20709893

RESUMO

Family 43 glycoside hydrolases (GH43s) are known to exhibit various activities involved in hemicellulose hydrolysis. Thus, these enzymes contribute to efficient plant cell wall degradation, a topic of much interest for biofuel production. In this study, we characterized a unique GH43 protein from Fibrobacter succinogenes S85. The recombinant protein showed α-l-arabinofuranosidase activity, specifically with arabinoxylan. The enzyme is, therefore, an arabinoxylan arabinofuranohydrolase (AXH). The F. succinogenes AXH (FSUAXH1) is a modular protein that is composed of a signal peptide, a GH43 catalytic module, a unique ß-sandwich module (XX domain), a family 6 carbohydrate-binding module (CBM6), and F. succinogenes-specific paralogous module 1 (FPm-1). Truncational analysis and site-directed mutagenesis of the protein revealed that the GH43 domain/XX domain constitute a new form of carbohydrate-binding module and that residue Y484 in the XX domain is essential for binding to arabinoxylan, although protein structural analyses may be required to confirm some of the observations. Kinetic studies demonstrated that the Y484A mutation leads to a higher k(cat) for a truncated derivative of FSUAXH1 composed of only the GH43 catalytic module and the XX domain. However, an increase in the K(m) for arabinoxylan led to a 3-fold decrease in catalytic efficiency. Based on the knowledge that most XX domains are found only in GH43 proteins, the evolutionary relationships within the GH43 family were investigated. These analyses showed that in GH43 members with a XX domain, the two modules have coevolved and that the length of a loop within the XX domain may serve as an important determinant of substrate specificity.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Fibrobacter/enzimologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Fibrobacter/classificação , Fibrobacter/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Glicosídeo Hidrolases/genética , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Temperatura , Xilanos/química , Xilanos/metabolismo
8.
J Bacteriol ; 192(16): 4111-21, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20562312

RESUMO

The hydrolysis of polysaccharides containing mannan requires endo-1,4-beta-mannanase and 1,4-beta-mannosidase activities. In the current report, the biochemical properties of two endo-beta-1,4-mannanases (Man5A and Man5B) from Caldanaerobius polysaccharolyticus were studied. Man5A is composed of an N-terminal signal peptide (SP), a catalytic domain, two carbohydrate-binding modules (CBMs), and three surface layer homology (SLH) repeats, whereas Man5B lacks the SP, CBMs, and SLH repeats. To gain insights into how the two glycoside hydrolase family 5 (GH5) enzymes may aid the bacterium in energy acquisition and also the potential application of the two enzymes in the biofuel industry, two derivatives of Man5A (Man5A-TM1 [TM1 stands for truncational mutant 1], which lacks the SP and SLH repeats, and Man5A-TM2, which lacks the SP, CBMs, and SLH repeats) and the wild-type Man5B were biochemically analyzed. The Man5A derivatives displayed endo-1,4-beta-mannanase and endo-1,4-beta-glucanase activities and hydrolyzed oligosaccharides with a degree of polymerization (DP) of 4 or higher. Man5B exhibited endo-1,4-beta-mannanase activity and little endo-1,4-beta-glucanase activity; however, this enzyme also exhibited 1,4-beta-mannosidase and cellodextrinase activities. Man5A-TM1, compared to either Man5A-TM2 or Man5B, had higher catalytic activity with soluble and insoluble polysaccharides, indicating that the CBMs enhance catalysis of Man5A. Furthermore, Man5A-TM1 acted synergistically with Man5B in the hydrolysis of beta-mannan and carboxymethyl cellulose. The versatility of the two enzymes, therefore, makes them a resource for depolymerization of mannan-containing polysaccharides in the biofuel industry. Furthermore, on the basis of the biochemical and genomic data, a molecular mechanism for utilization of mannan-containing nutrients by C. polysaccharolyticus is proposed.


Assuntos
Proteínas de Bactérias/metabolismo , Celulase/metabolismo , Glucanos/metabolismo , Bactérias Gram-Positivas/enzimologia , Manosidases/metabolismo , Polissacarídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Domínio Catalítico , Celulase/genética , Celulase/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/genética , Estabilidade Enzimática , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Manosidases/genética , Manosidases/isolamento & purificação , Dados de Sequência Molecular , Sinais Direcionadores de Proteínas , Análise de Sequência de DNA , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...